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ABSTRACT

The load, mass flow, stiffness, and damping for an inherently
compensated, multiple-inlet, externally pressurized square thrust
bearing are analyzed. Small perturbation methods are used to linearize
Reynolds' equation, and numberical methods are employed to find the
solution to the resulting equations. Design curves are presented in
terms of restrictor coefficient, supply pressure, and location of the
inlets for low squeeze numbers.

Optimum bearing stiffness occurs at a restrictor coefficient
between one and two. At this value the damping is a minimum and
negative damping (insfability) can be present at supply pressures
exceeding four atmospheres. Stiffness increases with supply pressure.
Optimum damping occurs at a restrictor coefficient equal to five.
Stiffness is considerably reduced but can be improved by operating

at high supply pressures.
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w*

p*

=l

D*

NOMENCLATURE

DESCRIPTION
Denotes real varlable
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Perturbation parameter
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Fluld viscosity
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o a

-2
Maximum value of x on the boundary ( lg—lm)
: A=2Y

Maximum value of z on the boundary (-n_z__ )
Orifice discharge coefficient

Orifice diameter

Damping

Dimensionless damping [D*/(ALﬁJ(L*lhg)3)]

a 3p 2 b 37,2
FC yax+ I (2

o 3z z=b* o ox

) x=g+ dz

[ Py(x,2)Py (x,2,t) ]
Acceleration of gravity
Film thickness

Mean film thickness

Dimensionless film thickness
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NOMENCILATURE (continued)
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Column number in numerical field
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Bearing length

Mean mass flow

Dynamic mass flow through orifice
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Dynamic mass flow from central region
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Mase flow from central region
Maximum column number at inlet boundary
Maximum row number at inlet boundary
Number of inlets

Pressure

Dimensionless pressure (P*/P¥,)
Ambient pressure

Dimensionleas static pressure

Dimensionless dynamic pressure

Dimensionless dynamic pressure downstream of inlet

Dimensionless static pressure downstream of inlet

Dimensionless supply pressure

Inlet span to total bearing span ratio
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NOMENCLATURE (continued)

SYMBOL DESCRIPTION
R Gas constant
c* Time
t Dimensionless time (t*w %)
T Temperature
W Bearing load
W Dimensionless bearing load (W‘»"-‘/)\P%L‘ff2 )
W;. Static load
W1 Dimensionless static load
Wg Dynamic load
Wy Dimensionless dynamic load
x* Variable length
X ‘Dimensionless variable length (x*/L%)
zk Variable width

z Dimensionless variable width (z¥*/L¥)



CHAPTER I

INTRODUCTION

Energy loss and the wear of machine parts due to friction are two
of the problems which are faced in industry every day. Fluid film
bearings are used at critical areas to reduce this friction. The f}uids
used in thgse bearings are usually a gas or oil. With the reduction of
friction, the lives of the machines are lengthened which saves the
industries large amounts of money both in labor and shut-down time.

The two basic types of bearings used in industry are the thrust
bearing and the journal bearing. The journal bearing supports radial
loads; whereas, the thrust bearing supports an axial load. In some
cases, thrust bearings have been used in conjunction with journal
bearings to provide damping for radial loads.

A bearing load can be supported hydrodynamically or hydrostatically.
In hydrodynamic lubrication, Figure 1(a), high pressure is developed
when the fluid film is "dragged" along as a wedge. The fluid film in
a hydrostatic bearing must be externally pressurized to support a load.
The externally pressurized bearing may be either orifice compensated,
Figure 1(b), or inherently compensated, Figure l{c). Each of these
geometries has a flow inlet restriction area which controls the flow
through the bearing. The "restrictor” is dependent upon the orifice
area in the orifice compensated case and is dependent upon the hole
diameter and film thickness in the inherently compensated case.

In recent years, there has been a rapid growth in the development
of gas bearing supported systems. The reason for this growth is that

industry is beginning to recognize the many advantages of gas
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lubrication. One of the most appealing advantages is the use of a pro-
cess fluid as the lubricant. This eliminates the need for an external
lubrication system. Some of the other advantages of gas lubrication
are: lower friction, no contamination, low-to-high temperature capabil-
ity, high speed capability, and high reliability and long life.

The response of gas bearings to small periodic load changes is
greatly influenced by the dynamic characteristics of the gas film.
Stiffness and damping are important parameters which affect this
dynamic behavior of the system. Stability problems arise when there
is negative damping present. Although inherently compensated bearings
have less stiffness than pocket-type bearings, they do exhibit improved
stability over the pocket-type bearings which are prone to pneumatic
hammer [11*.

Richardson [1] was one of the first to carry out a theoretical
analysis of the dynamic characteristics of an orifice compensated gas
bearing. Using lumped parameter methods, he developed relationships
which could be used to obtain gquantitative design information for
compenéated gas bearings. Licht and Elrod [2] analyzed the stability
of an orifice compensated bearing similar to the one gtudied by
Richardson using distributed parameter methods. There was a ma;ked
divergence from the results obtained by lumped paraméter methods 1p.the
case of the limiting values which influencg the stability of the
bearing. Stiffler [3] has presented an analysis of an inherently
compensated, multiple-inlet, circular thrust bearing based on distributed

parameter methods. In his solutions, the stiffness and damping as

*Numbers in brackets refer to references



functions of supply pressure, inlet location, restrictor coefficient, and
excitation frequency are described by perturbation models.

Mullan and Richardson [4] used lumped and distributed parameter
analyses to develop solutions for the inherently compensated gas
journal bearing with small eccentricity ratios. After linearizing
Reynolds' equation using small perturbation methods, the computer was
used to obtain results which were presented in graphical form with
stiffness and damping as functions of supply pressure and flow. Lund [5]
presented a theoretical analysis for the threshold of instability of a
rigid rotor supported in hydrostatic gas journﬁl bearings. Perturbation
techniques were used, and numerical results were given for the threshold
of instability as a function of supply pressure ratio, restrictor
coefficient and eccentricity ratio.

This thesis deals with an externally pressurized, inherently
compensated, multiple-inlet, square thrust bearing. A mathematical
model is formulated for the general rectangular case, as shown in
Figure 2, with the bearing dimensions normalized by the bearing length.
Thus, the bearing is of unit length and has a width, A, where A is the
actual bearing width divided by the length. The nonlinear Reynolds'
equation is solved using small perturbation techniques. Design curves
for the stiffness, damping, load, and mass flow are presented as
functions of inlet location, restrictor coefficient, and supply pressure
for small squeeze numbers. A theoretical analysis of these bearing

characteristics is developed in the following section.
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Figure 2. -‘Inherently Compensated, Multiple-Inlet,
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CHAPTER Il

FORMULATION OF THE MATHEMATICAL MODEL

For the development of the theoretical model, the bearing is
divided into three distinct reglons--the inlet region, the central
region, and the sill regiom. The gas lubricant flows through the sill
and attains an ambient state at the outer edges of the sill, It is
assumed that there are enough inlets so that they may be considered
as an equivalent line source, Furthermore, only one quadrant is‘

considered since the bearing is symmetric,

2.1 Reynolds' Equation Applied to the Bearing

In order to solve for the mass flow, load, stiffness, and damping,
the pressure distribution throughout the bearing must be deterﬁined.

The pressure distribution is described by Reynolds' equation

3 dp* 3 oP* a
———-(h*3p* — )+ ———-(h*3p* — ) = 12y — (p*h*) (2-1)
Ixk dxk ozk dz¥* at*

The film thickness, h*, is uniform throughout the flow regiom,
since it is bounded by two parallel rigid surfaces., The separation of
the surfaces depends only upon the load disturbance..
It is assumed in the analysis that the film behaves as an ideal
gas with constant specific heats and that the flow is isothermal {6] with
E*/p* = constant, The following dimensionless variables,
P = P*/P%
x = xk/fL%

z = zk[L*



t = tRw*

h = h*/h¥
are introduced into Reynolds' equation to obtain

32 32 ) 20 9
— (%) + — (%) = — ——(#h) (2-2)
ax? 222 nd ot
where the squeeze numwber, O, 1s given by
12pwHL%2
g = —2-——"'— (2-3)
h¥ P *
In terms of a perturbation parameter, €, the film height and
pressure distribution can be approximated as
h(t) = 1 + € sin(t) (2-4)
P(x,z,t) = Py(x,z) + ePo(x,2z,t) (2-5)
where P1(x,z) is the dimensionless static pressure distribution and
Pyp(x,z,t) is the first order dimensionless dynamic pressure distribution.

When Equations (2-4) and (2-5) are substituted into Equation (2-2),

two equations are obtained from terms of order 0(1) and 0(e), respec-

tively.
a2p, 2 22?2
0(1): + l =10 (2-6)
3x2 322
2 2
9°(P1Py) 3 (Ple) ) )
0(e): + = g(Pycos(t) + — ) (2-7)
ax? 322 at

Or, in a more convenient form, Equation (2-7) is written as

32 323 g 2 a8
+ =~ [P cos(t) +
92 322 Py ot

g
1 (2-8)




where
g(x,z:t) = Pl(x,z) Pz(x|3,t) (2"9)
If the pressure at the inlet boundary is defined arbitrarily as

(P, + €Py), the remailning static conditions at the inner edges of the

5111 are
Py (x,b) = Pg 0 <x<a
P; (a,z) = P, 0<z<h
where
1 -2y A -2y
an= and b =
2 2

At the outer edges of the sill the static pressure 1s ambient,

and
Pi(x,A/2) = 1 0<x<1/2
P,(1/2,2z) = 1 0<z<A/2
The boundary conditions for Equation (2-8) are
g{x,A/2, t) =0 0 <x<1/2
g(1/2,z,t) =0 0 <z <Af2
g(x,b,t) = PDPi 0 <x<a
g(a,z,t) = PPy 0<z<b
In order to normalize the boundary conditicns for Equation (2-6),
let

P21+ -1 F? (2-10)

Then, upon substitution into Equation (2-6),
= 2
32-1?12 32 Pl

+

-0 (2-11)
w2 3 z2

for which the boundary conditions are given by
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?i (x, A/2) = 0
P2 (1/2,2) =0
P2 (x,b) =1
F1? (a,2) =1

The load disturbance is assumed to be periodic, Thus, time may
be eliminated from Equation (2-8) by assuming a periodic solution for
the dynamic pressure.
Let
g(x,z,t) = g1(x,2) sin(t) + gy(x,z) cos(t) . {2-12)
Substituting this expreséion into Equation (2-~8), and equating

coefficients of the sine and cosine terms,

3%g a’g ag
1 + . = - 2 (2-13)
3x2 3z2 Py
2 2
o 4] d g2 o 2
31{2 3z2 Py

For the central region, the solutiom to Equation (2-11) is a
constant and is given by
P2 x,2) = 1.
Along the sill, numerical methods are used to solve Equation (2-11),

After the static boundary pressure, P is specified, the static

Q?
pressure field can be found. The dynamic and static boundary pressures,
P; and P , must be determined from the continuilty condition for the

mass flow at the inlet boundary. The solutions to the coupled Equatiomns

(2-13) and (2-14) can then be found by numerical methods,
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2,2 Mass Flow

From flow continuity at the boundary,

Mg+ ME = ME

*
M#* = mass flow through the inlets = mg + emp

M; = mass flow through the sill region = m: + Em;
Mg = mass flow from the central region = Emg

and mg is the mean flow through the inlets (and the sill region) for the
statically loaded bearing,

The mass flow through the sill region is given by Constantinescu

[7] as
* 1 p*n*3  a apx2 Ib BP*2) )
S {1 (—) dx + (—) 4 dz ] . (2-15
2 12 u Po* -a 9z z=b* -b 3 x x=a ]

When Equations (2-4), (2-10), and (2-5) are substituted into Equation

(2-15) the linearized mass £low through the sill region is

o pi 3 a g b 3g
M; = m + 3m, €sin(t) + QeY[ S () ax+ [ ()4 dz](2-16)
: 12uRT -a dg z=b -5 3x
where *2. %3
*
* Pa ho 2
m, = - —— (B, - 1) F (2-17)
6URT
and
a 37,2 b oy
F= [ ( )=h+dx+f (—)_ 4 dz . . (2-18)
o 3z 2 o 29x X=a

The mass flow, Mg, from the central region is given by the game
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general expression as Equation (2-15) except that the derivatiwes are

evaluated at the inside of the inlet boundary, Thus,

I e a 3 b 2 -
* a "o L8 g
W m e — 2 26) [ ) dx ok S (— ) dz ] (2-19)
12uRT -8 9z ~b 3x

where the mean flow is zero,

The flow through the inlets [8] is described by

' k-1
«  CoNymd *h *mpp.*  2g0x /2 p Uk P ¥ 172
M, = , [ ] (— [~ " 1 ,
vRT k=1 Pg P,
P, 2 k '
> ( Yk-T (2-20)
P k+1
.8
or
*, % * 1/2 L
«  CpN1md,*h *hP P, 2gok 2 k1
M, = ( ) (—) ,
—_ k+1 k+1
vRT
o k-1
— S (2-21)
P k+l

Equations (2-4) and (2-5) can be substituted into Eduations (2-20)

and (2-21), and, when terms of order 0(l) and O(e) are retained,

% N _ Py PO 2 k-1
M = m, 1 4 [sin(t) + ( ) oy J €, > (—) (2-22)

P, Pg kil
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or
k.
* * * Pa S |
M) = my + mg €8in(t) , ~em < () : (2.23)
P k+1l ,
where . _1
1 Pg k-1 (P,/P,)
Gp = — (—) = [ — k-1 ] | (2-24)
and
* 172 k-1
CpNymd *h *PgP, 280k P, p, k1 172
o* = ° o (—  (HMep2y® ],
VRT k-1 P, 8
Sk .
P 2 =
LN S (2-25)
P k+1
or
* * 1/2 -l
. CoN1T dokho PPy 2g.k 2 k-1
m, = ( ) (—) ’
vRT k+1 k+l
X
Po 2 %1
— < (=) : . (2-26)

P k+1

8

From the continuity requirement for the mean mass flow through the

bearing, and for adisbatic flow through the orifice, P, is given by

1/k k
AP 2 P, k=1 . 172 P, 2 i
1= P - (Jk 1,2 > (—) (2-27)
P -1 Pg Pg P, kt+l
and
l‘ .
X 2 k1 YT o2 e 2 BT
PO l+AP (— ) I ) (2-28)
8 P k+l

k+l k+l
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where the restrictor coefficient, A, is

\ 6 Cpipmde n 2gokrT 172

PP *n *2F (k-1)

and F 1s given by Equation (2-18), The restrictor coefficient, A, 18 a
dimensionless parameter which giveé an indication of the resistance to
the mass flow through the orifice and the sill, As the restrictor coeffi-
clent increases, the resistance to mass flow increases.

The pressure downstream of the orifice, P,, is directly affected
by the restrictor coefficient, An increase in the restrictor coefficient
results in an increase in the pressure downstream of the orifice. If the
flow is not critical, a Newton-Raphson method is used to solve Equation
(2-27) for P,, or if the flow is critical, P, 1s obtained directly from
Equation (2-28), Once P, is found, the static pressure distribution
throughout the bearing (and the bearing load) can be obtained.

To determine the boundary conditions for Equations (2-13) and (2-14),

the perturbed mass flows are equated:

0(c): m3* + ml* - mz*

After substitution of the assumed form of g(x,z,t) given by Equation
(2-12) and equating the coefficients of the sine and cosine terms,

g1(x,z) and gz(x,z) along the inlet boundary are obtained from

2P Pg a 98] 3g] ' b dg)
g1(x,2) = ——— JI( ) == lax+ J(( )L
ag(Pg-1)F | o dz z=b dz z=b~ o ox X=a

3gy 2P P
“—)  _lazl +_ 22 (2-29)
ax x=a 0.2 .
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and
2P _P a 98 382
g2(x,2) = —e | [ [—) - (—) ]
az(Poz—l)F o dz z=b 3z zmb~
b O9g og
+ S {( —*39 - (—~—?) ) d;} (2-30)
o] 9xX x=a 3x xmag~
k
for P 2 ——
2yl
P, K+l
or
a 3g] 3g1 b 3g g
A - (—) Jdx + [ [ ) - ) ldz
o dz z=b dz E=b~ 0 9X  Xma X  x=a~
2 -
= - F(Po =-1) (2-31)
and
a 9g2 agz b 9gy 38y
JI¢ ) - { ) lax + [ [( ) - (+— ldz = 0
0 az zwbt 3z z=b~ o 3x xmat - 3x axwa"
(2-32)
"
f P 2 e
Tl oy T
P k+1

2.3 Bearing Load

If the restrictor coefficient is specifled, the static pressure
distribution can be found from the solution of either Equation (2-27)
or Equation (2-28). The static load is then given by

Af2 172

Wi=4 S S Py (x,z) dx dz | (2-33)
[+] [+] ’
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where the double integral is taken over the entire quadrant,
Also, given the solutions for gl(x,z) and 32(x,z), the dynamic

pressure distribution is simply

g1(x,2) 8, (x,2)
Pr(x,z,t) = ——— . ein(t) + ———" cos(t) .
Pi(x,2) Pl(x,z)

The dynamic load is defined by

Af2 1/2 .
W= 4 [ Py(x,2,t) dx dz (2-34)
[s) o '

where the double integral is again taken over the quadrant, The dynamic

load is then writtem in the form

Wo = C sin(t) + B cos(t) ., {2-35)

2,4 Stiffness and Damping

If the bearing load executes small harmonic motion, the equation
of motion is written
* * * * , 4T
LRI LR I S Gl S (2-36)
dt
where K* and D* are the stiffness and damping constants respectively,

and Y* = ¢h_* sin(u*t*). Equation (2-36) can be rewritten as

o
Wy K*h,* D¥h_*u
Wy &= —————a - ____~  gin(t) - cos(t) (2-37)
2 AP *L*2 AP, *L*2 AP *L¥2

By comparison of the above equation with Equation (2~35), dimensionless

stiffness and damping can be defined by



C . K*ho*
KB s - - * v
Py-1 AP, L¥2(Pg-1)
128 D*
D = - = . —
L*
o} ALT( )y

hg

.16

(2-38)

(2-39)
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CHAPTER III

IMPLEMENTATION OF THE NUMERICAL METHODS

Due to the boundary conditiong and the geometry of the problem, a
closed form solution was not found. Several approximate methods were
considered without success, and it was necesgary to use a finite
difference technique to golve the problem. In this chapter, the

numerical model which is used to represent the problem is presented,

3.1 The Equations in the Field

The successive-over-relaxation (SOR) method [9] was used to modei
Equations (2-11), (2-13), and (2-14) in the field, This method was
chosen because it offered the advantages of fast convergeﬁce and small
computer storage. In the SOR method, the most recently coﬁputed value
at any surrounding node is used when the value at a particular node is
computéd. A temporary value at a particular node is calculated; then,
the weighted average of this value and the old value at the node is taken
using an acceleration parameter, and this average is the new value at
that node, Central differences are used to represent the partial deriva-
tives, This central difference technique gives a truncation error on
the order of the square of the spatial increment, Ax2 or AzZ,

Letting fi,j represent (Fiz)i,j and the applying the SOR method,
Equation (2-11) is modeled as follows:

1

£] o= —— (£0 4 (%

L Jepzy 1317 T1,3-1

2.0

+ g2¢ 2 o+l )

£

1, B (3-1)
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o+l * o

where B = Ax/Ay and w; is the acceleration parameter,
In order to have the fastest convergence possible, an optimum
acceleration parameter, ,, must be chosen. Roache [9] gives this

parameter for a rectangular field with Dirichlet boundary conditions:

1 - vl
W = 2 ( )} (3-3)
n
where

m T

cos{ — ) + 82 cos h]
I-]1 J1 2

n o= : 3 : ] . (3-4)
1+ B '

The acceleration parameter, w, used in Equation (3-2) is the ona}cal—
culated in Equation (3-3).

Equations (2~13) and (2-14) are modeled as follows:

1
o] Ot
(gl)* [(gl)g,j+l + (81)1,;.-1 + 82(81)c:+1’j + 82(81) i—i,j

L3 20482

* ——(e)y , | (3-5)

a

o+l *
(31)1,5 = wz(sl)i’j + ﬁ l-wzl(sl)i’j (3-6)
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* N o+l 2 a 2 o+l
(32)1’1” 2(1+62) [(82)1,14-1 + (82)1’3_1 + B8 (82)1_',1.1 + B (82)1_1'1

. Ax%0
- M@y - (gl)f:'jl ] (3-1)
- 11,3
CH‘]. * o

Operations are performed in order from Equation (3-53) through Equation
(3-8) for each node (1,3).

Again, an optimum acceleration parameter i1s needed; however, there
is no analytical formula which gives this parameter., Trial and error
procedures were used, and the acéeleration parameter was found to be
sufficiently close to that given by Equation (3-3), Thus, Equation (3-3)
was used in all cases to find the needed parsmeter,

Having modeled the equations in the field, the boundaries must be
modeled., In the case of Equations (3-1) and (3-2), the boundaries
have constant values, but this is not the case for Equatioms (3-5)
through (3-8), They have Dirichlet boundary conditions at the outer edge,

but the conditions along the inlet boundary depend on the mass flow,

3.2 Mass Flow

From mass flow relationships, Equations (2-29) through (2-32) were
derived to describe gj(x,z) and gp(x,z) at the inlet boundary. The two
functions, gj(x,z) and gy(x,2), are constant along this boundary, and

their values on the boundary can be computed using Simpson's 1/3 Rule
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and central differences. After rearranging, g;(x,z) and ) (x,2) on the
boundary are given by
)O'rl-l

o+l Ol ol o+l
(81)$F i,i° {g [(sl)p 141 + (gl)p«-l,jr'r'l + 4[(81) L+1 + (g p,i-1 )

Az N
o+l o+l a o+l
* ()i, 41 * B, 51 pronld i (61 4y -1

+ (81T qu1 + 481 g1 q 611 ) * (8 1)i+l,q+1

(3-9)

+ (81)4.1,q41 |~ *

okl Ax 7 2P c,PB
3Az az

and

P

Az Ng
+ )3
q

+ GIFH, 1+ Gt 4 ] (822541 oo

LSOl o atl

Ax _
+ (sz) ] ©(3-10)
i- 1 ,qt1 Az | ‘
for
k
Po - 2 Rl

— > =)
P, k+1



21

or
o+l Np ol o+l o+l o+l
(81)1’_-’ = Cq ) [(gl)p-l,j-l-l + (gl)p-l,j—l + 4[(gl)p,j+l + (gl)p,j—l ]
P

Az N

a 1
+ I [(gl)gil,q-l

1 1
+ (Sl)gil,j+1 + (gl)gil,jﬁl 1 ”
X

ol o+l oFl o+l
+ (81)1—1,q—1 + 4[(gl)i+l,q + (81)1_1'q 1+ (gl)i+1,q+l

Ax |
+ (gl)gfi’q+1.] ™ + F(Po2 - 1{} (3-11)

and

ol Nb atl o+l o+l o+l
(1,3 = C3 {:ﬁ [B2p-1,4v1 + (82 4 g *+ 4G pyy + (82D 5 ]
otl otl hz  Na o otl
+ (8dpir, a1 * (32)p+1,j-1 ] A% * 2 [(32)i+1.q-1

ol

o1
TR {8 )

O] o1
+
q ¥ €211, 1+ (82141 g1

Ax

for

k
) k"l

PO
— <
Py K+l
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where P = 2,4,6,-.0-Nb and q=- 2'4"6’0000Na

with
. 2 PP, ( 1 )
2 mEZ-DF 2 B Py 2028, 20N,
1+ 2 ( + )
ap(Bg-DF. &x Az

1

C3 =

282Ny, 24xN
+
Ax Az

Using Simpson's 1/3 Rule and central differences,

Nb
ol Uped g = fp1,g * 4000 = B0 ¥ Fpua ge < oy ]

Az Ng
+ L [f - f + 4(E - + £ - f
Bx g [f341,9-1 = £1,q-1 % 4Cpyy o = £1,9) * fag1,q41 ~ f1,q01 ]
Ax
3Az

with p - 2,4,6’-0-0Nb and q = 2.4,6,0-.0“50
When solutions fox gy(x,z) and gy(x,z) through the entire field
are found, Simpson's 1/3 Rule is again used to compute C and B for use

in Equation (2-35).



CHAFTER IV

ANALYSIS OF THE RESULIS

The design of a thrust bearing is based upon the value of a
restrictor coefficient which givés either magimum stiffness or maximum
damping. The baearing is analyzed at a small squeeze number for two
reasons: |
1. Most design work will be done for smaller squeeze numbers (F <4)

and the stiffness and damping are insensitive to ﬁhe small squeeze
numbers, |
2. For larger squeeze numbers, the stiffness increases and démping
decreases [ 31.
The curves describing the effect of important bearing parameters on
load capacity, stiffness, damping, and mass flow are shown for a square
bearing (A = 1) in Pigures 3-14., After an error analysis, these .

relationships are discussed.

4.1 Error Anglysis

In the solution of the problem by finite difference methods,
Equations (2-11), (2-13), and (2-14) were modeled using central
differences. Due to the truncation of the Taylor series in the
development of the finite difference model, there is an error in the
numerical model. The error in the model of the equation describing
the static pressure distribution is of the order of the product of 10-6
and the fourth spatial derivative cof the solution. In the case of

modeling the coupled equations describing the dynamic pressure

distribution, the error is of the order of the product of 10-4 and the
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fourth spatial derivative, These errors are not significant since the
fourth spatial derivatives are very small,

Convergence was assumed to have been attained when the abaolute
value of the maximum change in the field from ome iteration to the next
was less than some specified change. This change in the solution of the
static pressure distribution was on the order of 10-3. 1In the case of
the solution for the dynamic pressure distribution, the maximum change

allowable was of the ordei 10"5.

4,2 Load Capacity

A dimensionless bearing load capacity, Wy, is presented as a
function of the restrictor coefficient, A, and supply pressure, Pg, In
Figures 3~5 for ratios of inlet span to bearing span, r = 0.4, 0,6, 0.8,

The dimensionless load capacity is defined by

W]_*

AP *L*2(P 1)

where A = 1,

At a fixed restrictor coefficient (i.,e., a fixed P,) the load .
capacity increases with r. The reason 1s that more of the bearing pad
is enclosed by the inlets where the pressure is uniform at P, (the
pressure decays from P, to 1 across the gill)., Little change in load
capacity occurs for variations in the restrictor coefficient in the
range of very high restrictor coefficients and the range of very low

restrictor coefficients for all geometries,
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4,3 Damping

The dimensionlgss damping is very dependent upon the restrictor
coefficient for all geometries and supply pressures as can be seen in
Figures 6-8, When instability occurs, negative damping is present. The
figures show that instability can occur for supply pressures as low as
Pg = 5, depending upon the inlet location., The range of restrictor
coefficient, A, for instability varies considerably with geometry., The
widest range of instability occurs for the geometry, r = 0.4, and the
range decreases for increasing r. With‘high supply pressures, maximum
damping'occurs in the ranges, A ¥ 5 and A < ,1, With low supply press
sures, damping approaches a maximum as the restrictor coefficient
approaches zero, Within the above ranges, geometry does not have much
effect upon the damping. Of course, it is desirable to maintain high
stiffness when a design is based upon maximum damping. Thus, the final
choice of restrictor ccefficient depends upon its relation to tﬁe

stiffness.

4,4 Stiffness

The relationship between the stiffness, K;, and the restrictor
coefficient, A, is shown in Figures 9-11. The stiffnesé is very sensitive
to the restrictor coefficient and is a maximum in the range 1 < A < 2,
which is the range where instability occurs for thg higher supply press
sures, However, at larger values of span ratlo, r, instability can be
avoided for supply pressures, Py < 10,

Two points should be made:
1. maximum stiffness occurs at wvalues of rastrictor coefficients where

damping is a minimum; thus, high stiffness and damping are not
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compatible;

2. maximum stiffness occurs near the restrictor coefficient value
where the flow through the orifice is critfcal,

As the restrictor coefficiefit approaches zero, the stiffness also
approaches zero although damping is increasing. Thus, when designing
for maximum damping, the higher vaiue of A = 5 is generally a better
selection, |

The stiffness, Kj, also increases as the span fatio, r, increases.
Furthermore, Kg is non-dimensionalized by the supply pressure (gage);
therefore, the actual stiffness 1s considerably improved by operating

at higher supply pressures,

4,5 Mass Flow

Figures 12-14 contain curves of the mass flow versus restrictor
coefficient for the three geometries and various supply pressures, The

dimensionless mass flow is' defined as

o - - F(Poz - 1)

where F i1s given for the three'different span ratios 1n-the.;ab1e'be10w:

T B F

0.4 -1,83
0;6 -3. 48
0.8 =8,44

The actual mass flow is given by

k2. *
* Pa h03

B = ) n,
BHURT

Generally speaking, the mass flow does not play a direct part in the
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optimum design of the bearing, but this information is necessary for the
overall design of the supply system, As a rule, a larger mass flow does

increase the frictional losses in the system,

4.6 Squeeze Number

The effect of squeeze number on the stiffness and damping 1s shown
in Figures 14-17. The results include the two restrictor coefficients
that most influence the bearing design: A = 1.5, 5. Low squeeze num—
bers (0 < 10-20) have little effect on the dynamic characteristics. For
large squeeze numbers the damping decreases and the stiffness increases
(termination of the curves at high squeeze numbers is due to instability
of the numerical solution). As the squeeze number increases, the stiff-
ness reaches a maximum, The reason is that the viscous forces oppose
any rapld flow changes through the bearing, and the operation approaches

that of a piston inside a closed cylinder. From Equation (1),

[ph]; , , = constant
or

(Pl + EPZ)(I + £) = constant

Thus, P, = ~P;- Integrating both sides over the area and using Equatioms

(30), (32), (35), and (36);

[Ks]o - o wo + l/(ps-l)

The above equation is in agreement with the values of stiffness in Figure

15 which reach their maximum.
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CHAPTER V

CONCLUSIONS AND OPTIMUM DESIGN

The first decision to be made in the design of the bearing is the
choice between optimum stiffness and optimum damping. Stiffness is
usually the first choice since film thicknesses are on the order of .001
fnches and a load disturbance can lead to closure of the bearing if it
"is too "soft". Furthermore, natural fréquencies of the bearing-load
system must be avoided. However, damping is necessary when disturbances
are present, and many bearings are designed primarily as film dampers.
The design procedure 18 as follows:

1. For maximum stiffness, select a restrictor coefficient,A = 1-2,
Generally, a larger span ratic and a higher supply pressure increase
stiffness, but these choices must be weighed agéinst the frictional
losses associated with the increased maas flow.

2. The cholce of damping 18 dependent upon the minimum allowable
stiffness.‘ Low supply pressures (Pg = 1.5,2) provide high damping
for low values of the restrictor coefficient; however, there is a
considerable decrease In stiffness. At high supply pressures,
damping increases for larger values of the re:trgctor coefficient.
Supply pressure has little effect on damping at higher values of
restrictor coefficient, but a higher supply pressure will improve
the corresponding stiffness. The damping and stiffness can also be
improved by increasing the span ratio. Thus, there are two choices
of damping which can be made:

(a) 1f low values of stiffness are acceptable, choosé a high span

ratio with a low supply pressure and g restrictor coefficilent
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in the range 1 < A < 2;

(b) if higher values of stiffness are needed, choose a high span
ratio with a high supply pressure and the reatrictor
coefficient, A= s,

3. The choice of restrictor coefficient fixes the dimensionless load
capacity. Once the load is specified, the supply pressure
determines the bearing dimensions.

It is observed that the dimensionless stiffness and damping are a
function of the film thickness. The actual stiffness and damping are
improved by the selection of small film thicknesses. Thus, for a fixed
restrictor coefficient, the film thickness can be made arbitrarily
small by reducing the inlet area of the orifices. In this respect, the

designer is limited by the minimum allowable clearance for the bearing.



10.

46

REFERENCES

Richardson, H. H., "Static and Dynamic Characteristics of
Compensated Gas Bearings," Trans. ASME, Vol. 80, Oct.
1958, pp. 1503-1509.

Licht, L., and Elrod, H., "A Study of the Stability of Externally
Pressurized Gas Bearings," Journal of Applied Mechanics,
Vol. 27, Trans. ASME, Series E, Vol. 82, 1960, pp. 250-258.

Stiffler, A. K., "Analysis of the Stiffness ana Damping of an
Inherently Compensated, Multiple-Inlet, Circular Thrust
Bearing,'" ASME Paper No. 73-Lub-16.

Mullan, P. J., and Richardson, H. H., 'Plane Vibration of the
- Inherently Compensated-Gas Journal Bearing; Analysis and
_ Comparison with Experiment,” Journal of Basic Engineering,
Trang. ASME, Series D, Vol. 7, 1964, pp. 277-287.

Lund, J. W., "A Theoretical Analysis of Whirl Instability and
Pneumatic Hammer for a Rigid Rotor in Pressurized Gas
Journal Bearings," Journal of Lubrication Technology,
Trans. ASME, Series ¥, Vol. 89, 1967, pp. 154-166.

Laub, J. H., '"Hydrostatic Gas Bearings," Journal of Basic
Engineering, Trans. ASME, Series D, Vol. 82, 1960, pp. 276-
286, :

Constantinescu, V. N. Gas Lubrication. Translated Scripta
Technica, Inc. New York: The American Society of Mechanical
Engineers, 1969, p. 107.

Fleming, D. P., Cunningham, R. E., and Anderson, William J.
Stability Analysis for Unloaded Externally Pressurized
Gas-Lubricated Bearings with Journal Rotation. NASA TN D-4934,
December, 1963.

Roache, Patrick J. Computational Fluid Dynamics. 1972;
Albuquerque: Hermosa, 1972, pp. 117, 118.

Pinkus, Oscar, and Sternlicht, Beno. Theory of Hydrodynamic
Lubrication. WNew York;: McGraw-Hill, 1961, p. 4.
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THE COMPUTER PROGRAM
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LUBR«STFFLR.MAIN . _
1 c DESCRIBE FIELD AND ORTAIN OMEGA ‘
2 DOUBLE PRECISION PO'PSeRSTrP1SeX1+ERRL1GLeG2,ALLPAL2
—— 3 DIMENSION P1S{52:52}:61{52:52):62(52:52)
4 1P1(51,51)
- 2 ‘ REAL LMDaMO
6 PI=3,.14159
1 READ (S5:100) GelMDeMLeM2eN]sND
8 WRITE (6+891)
9 89) FORMAT(v19,10Xe? SIGMAts6Xe' PISUP)I Y o TX tRETe, 109X
10 1'PO*+10Xe *MOY+ 10X * WO+ 10X "F 28X+ '*'STFNESS ' 26X e tDAMP )
11 1400 EORMATI2F10,0+413)
12 M3=M1+M2
13 N3=N1+N2
14 FAC=1,0
15 DX=0.,.5/M3
16 DY=0.5%LMD/N3
17 BDX/0DY
Ig EPS=((COS(PI/M3)+Bx*2%COS(PI/NM) ) /(1. +B¥%2) ) ¥yl
1 OMG= - -
20 ¢ DEFINE BOUNDARY CONDITIONS
21 ¢ INNER BOUNDARY
22 MGZM3+1
23 NMYSNI+]
24 ME=Mi+ 1
25 NE=NLG+] -
26 Zu=M4
27 XY4ENY - —_
28 M=M2+1
. 29 NENS+1
- 30 ML=M+]
31l NL=N+1 e e e -
3e DO 1 TA=M.Mu
33 DO 1 IB=NeN4 I — -
34 1 P1S(IBrIA)=1,.0
35 DO 3 IC=1,M4
36 3 P1S(1.1C)= 0.0
37 DO & ID=2:Nu . e e e —
a8 4 P1S(IDr1)=0,0
39_. _ CDOS XESReM2
40 : DO 5 IF=2sN2
41 ZE=1F
y2 2E=IE
- 43 e B PSS IR IE) S 24 ZE Y A M AN )
44 DO © IG=2:N2
e S 0Q 6 IH=M,Muy — e
46 Z2GTIG
47 6 P1S{IGrIHI=ZG/ (N2+])
| 48 DO 15 IMSNeNG
49 DQ 15 INZ2eM2 - S e e e e -
. 50 ZN=IN
S 18 PASUIMe IND E 2N/ M ) .
52 . DO 820 I9=2.N2
i 53 820 P1S(I19,MH+1)=P1SC(I9:M3)
. sS4 DO 821 110=2,M2
55 821 PIS(NG+1,]10)=P1S{N3,110) B

56




S7 o ITERATE THRU GAUSS=SEIDEL

————— 58 C=0.5/(1.0+R%%2)
59 Cl=R*«2
. 60 oo 7 Jus1:+300
6l ERR1=0.0
52 Y=0.0
63 NN=M4
a4 D0 10 IK=2,Nu4
65 DO 11 IL=2+NN
66 X1=P1S(IK,IL)
67 X=Cx (PAS(IK e IL+1)+PISTIK » IL=1) +C 1 {P1S(IK+1, IL)
68 1+P1S(IK=-1,11)))
69 PIS(IK ILISOMG®X+ (1, 0=OMG) *P1G(IK,IL)
N 70 CALL ERROR(P1S»YeX1¢ERR1sME2 NG 1L ¢ IKe IMAX 2 JMAX) .
71 11 CONTINUE
72 IF (IK.EQ.N2) GO TO 12
73 60 T0 10
74 12 NNSMZ
75 10 CONTINUE
76 0DQ 720 I131=2,N2
77 720 P1S(IleMU+1)=P1S{(11eM3)
78 DO 721 111=2,M2
79 721 P1S(N4G+1,111)=P1SI(N3,I11)
— a0 YE=SQRT(Y)/Z(MIXNI)
81 IF(ERR1=10.%%=3) 13¢13,7
ae 7 CONTINUE
83 13 CONTINUE
84 F=0.0
85 C55=DX/ (3.0%DY)
‘ 86 COG=DY/(DX%*3,0)
1 a7 DO 26 IR=ML/M3s2
‘ as 26 FIF+CS55%(P1SIN=1rIR=1)+4 ,*¥P1S{N=1, IR} +P1S(N=1,1IR+1)~
89 16,.0)
90 DO 27 IS=NLI)N3vr2
91 27 F2F+Co66%x(P1S(IS=1vM=1) 44 *P1S{Ig M=) +P1S{IS+1lrM~1)=
92 16.0)
93 817 CONTINUE
94 READ (5,888) KleK3sK4oel 10l 3204
95 Ab=K4
96 Ruy=L4
97 BY=0,5*_MD/L3
98 BX=0.5/K3
99 888 FORMAT(6I5)
100 DO 31 IAS1:K&®
101 G2(1,1A)=0,0
102 51 Gi(1:IA)=D,0
103 DO 32 Is=1.L4
104 G = .
105 32 61(1I8+1)= 0.0
106
107 C INITIAL GUESSES
108
109 DO 33 IC=2,K4
110 DO 33 Ip=2.L4
111 33 Gl(ID,»IC)==(IC+1ID)/(QU+RY)
112 MNEWSKS =K1

113 NNEW=L4=L1




114 MNEW1=MNEW«=1
~115 NNEWLISNNEW=1 e —————— .
116 MNEW2=MNEW+1
- 117 NNEW2=NNEwW+1l e
118 MEND=K&=MNEW
119 NENDS| U=NNER
120 K6ESK4+1
S §-3 N Y- W' S I - — S
122 XNEW=MNEW1
123 YMNEW=NNEWL ... ) . S
124 DO 34 IE=MNEW: K4
125 DO 34 IESNNEW:L G
. 126 34 G2(IF,IE}=0,05-(IF+IE~MNEW=NNEW)#0 1/ (Z4+X4)%(=1,)
1 127 DD 35 1G=2MNEW1
128 DO 35 1Z2=2sNNEW1
129 35 G2(1Z2,16)=(16+17)%0s1/ ((XNEWHYNEW)} X2, J 2 (=1 )
130 DO 36 IJ=2»MNEW
: 13l 00 36 IK=NNEW.LU _—
132 36 G2(IKsIJ)=IJ*0.1/ (2 %MNEW) %{=1,)
133 DO A7 IL=MNEWKY4
134 DO 37 IM=2,NNEW
135 37 G2(IMeTLI=IMXO,1/(2*NNEW) k{w] )
136 C22=BY/(BX*3.0)
137 Cli=RX/{(RY*3.0])
138 PO=3.82D0
_____ 139 DO B1 I.K=1,7
140 READ(S¢401) PSeSIGMPRST
1ul e 401 FORMAT(3F10.0) ... .
142 IF(RST=30,) 82¢83,83
143 A3 PO=PS~,0N0S00
144 82 CONTINUE
145 CALL PLOAN(RST WO rPS,POrPIS»PyDX DY MeNeMy)NUsNIPMOsEY
146 1525/ LMD eNI*M3/PLeMEING)
147 e 819 CONTINUVE
148 T=PO/PS
149 GI=(2./2.0)u*(1.,4/0+4)
150 IF(T=QT) 949495
151 9y  ali=1,
152 AL2=F % (PO%*2=1,)
o ABd o CH4z2 xNEND*BY/BX+2.*MEND*BX/BY . .
154 G0 TO 9&
155 95 ALPH=PS/(P0x]1.4)=(0,4/2.8)*%({(PS/PO)ss{l./1.4)/
156 1(1.={PO/PS) k(o 4/1.4)))
B 157 e AL1=2 *PSaPO/(ALPH® (POX%2m] , ) 2F} _ _ o
158 AL2=2,*PSxP0/ALPH
159 Chuzy,+AL1»{2. *AY*NEND/BR+2. sBX#MEND/RY )
160 96 CONTINUE
” i6l SUM1=0.0
; 162 SUM2=0.0
N 163 DO 41 IR=NNEW2L3e2
: 164 SUM1=SUM1+C22% (61 (IR=1,MNEW1)+G1 ( IR=1 s MNEW2) +
165 o 34.0x{G1(IReMNEWL)I+GL1 (IR MNEW2))+G1(IR*1+MNEWL Y+ .
166 161 (IR+1,MNEW2))
167 §1 SUM2=SUM2+C22# (G2 (IR=1 e MNEW1) +G2{ IR=1 s MNEW2) +
168 14, 0% (G2{ IR+ MNEWL }+G2(IR/MNEW2) ) +G2{IR+1 ) MNEW1 ) +
169 1G2{IR+1, MNEW2)) L

DO 42 ISEMNEWZ,K3»2




171 SUMISSUMLI+C11x(G1 (NNEW1/s»IS~1)4G1l (NNEW2sIS~1)+
172 1. 0% (G1(NNEWY»IS)I+GL (NNEW2rIS) )} +G1 (NNEWL e IS+1)+ wem
173 161(NNEH2-IS+1))
A7 2:1S=1)+
175 14, ot{Ga(NNEwl IS)+G2(NNEW2+IS) ) +G2 (NNEWLIS+1)+
. 176 162 (NNFW2 2 18411}
177 IV=K4G
178 LW=NNE W
179 46 DO 47 IT=IW+LH4
180 RO 47 IHISMNEW,IV
1a1 GL{IT,IV)=(AL1*SUML+AL2) /CLy

— 182 000 G2(IT.IUI=ALLASUM2/Cu4

183 IF(IV.EQeMl4) GO TO 45
184 47 CONTINUE

185 GO TO 48

186 45 IV=EMNFW

187 IW=NNEW2

1a8 GO _TO 46

189 48 CONTINUE

190 Do 815 I1=1.K4
GLILY+1,I1)=Gl{L4~=1¢I1)
192 815 G2(Lu+1,11)=62¢1 4=1,11)

191

193 DO 816 I2=1.L4
- 194 GL{IZ2 Ky4+1)=G1{IR2sK4~=1)

195 816 G2(12/K4+1)=G2(12/Kl~1)

196 =BX/BY

197 C=0.5/7(1,0+B%%x2)

io8 Cl=B*xg

199 CALL STFOMP (K4 r LU v K6rLErSIGMsCoCLoNG MYy s5GLeB2sMNEWS
_ 200 ' AL2,C22,C310

201 1C33+/L3sKIrMEND ' NEND ¢ PL/PSeBXsBYsPOrFeRSTeWO MO IMAX

202 1JMAX)

203 GO TO 81

204 25 WRITE(£,199) PS!SIGMIRST

205 199 FORMAT( 0+ 'PO.LE.O«OR,GE.PS*,3F10,5)

206 81 CONTINUF

207 STOP

208 END




LUBR*STFFLR.SUB1

SUBROUTINE ERROR(PIS:Ye X1 sERRLsMeNeToJs IMAX JMAX) —
DOUBLE PRECISION P1S:X1+ERRL(ERR
DIMENSION P1S(N,M) SIS

ERR=ABRS (P15 (Je I} =X1)
SY+ERRA®2

IF (ERR=ERR1)1:1,2

"N

ERRI=ERR
IMAX=1
JMAXSJ ‘ S

D ®NO N E N

10 1 CONTINUE
il RETURN.

12 END




LUBR#STFFLR SUB2

e ___SUBRQUTINF PLOAD(XsWOrPS X1eP1S,Pe Dm.!ﬂ!ﬂm—ﬁm___.—»—- e
2 INI/MOeFyr SeLMDINI2M3PLrMEING)
———— D DOUBLE _PRECISION PSeXeX1,21¢72023.FUNTESToT1,T20T3s .
i 1IFP!Y1+P1S
- 5 REAL L. MO«MO
6 DIMENSION P1S(N6+M6),PL (NG IMG)
7 QTESY= {2, /2 ) %x(1,4/0,4)
8 PTEST=PS*QTESY
9 IF(X1=-PTEST) 4e410
10 10 CONTINUE
11 Do 1 1=1.200 -
12 Z1=X/{X1%%2=1,D0)
13 22s5(X1/PS)*#»(1.00/1.4D0)
14% Z23=DSQRT(1.00=(X1/PS)*x(.4D0/1,4D0))
15 FUNZ1.DO=Z14Z2%Z73%xPSk%*2
16 TEST=ZABS(FUN)
17 IF {TEST-N.000G01) 233
18 3 T1=2.00%X1%PS%x%2/{X1%*x2=1,D0)
19 T2=PSx¥2%X1%¥%=1/1,4D0 e
20 T3=PS*x{2.400/1, 400)*.400*X1**(-1.00/1 4pnd)/
- 21 1(2.8D0%73%%2 ) e e e
22 FP=(T1=T2+T3)%Z1%22%7Z3
23 Yi=x1
24 X1=X1~FUN/FP
______________ 25 .98 IF(Xi1-PS) 11+96:96 R e
26 11 IF(X1) 96,961
27 96 FP=FP=x10.04 S e
28 X1=Y1=~FUN/FP
29 GQ 10 98
30 1 CONTINUE
31 2 CONT INUE .
32 T=X1/PS
33 IF(T=QATESY) Yele5
34 4  X1=SQRT{1.,+X*PSe*2%{,4/2.4) %%, 54(2,/2,4)%%2,5)
35 ] IF(X1.lF.0.0) RETURN 16
36 - DO & J=1/MY
37 DO 6 K=1sN&
a8 6 PLIKrJI=SQRT(1 .04+ (X1%%2=1.0)%p1S{KrJ)%%2)
a9 W=g.0
40 DO 7 L=2/N3»2
41 DO 7 IM=2,M3r2
42 7 WoWH(DX«DY/9.0)*(PLIL+1oIM+L)4PL(L+1,IM=1)+
43 1P1(L=1p IM$I 4P (L=1p IM=1)4lbox{P1 (L e IMP1)+PL1CL ,IM=1)+
y4 IPLIL+1o IMI+PLIL=1rIM) ) +16+%PL (Lo IM))
_ u5 WO=4 o %W
46 P=wW(/LMD
u7 MO==Fx{X1lwx2~1,0)
48 Wo=(wWo=1,)/(PS5=1,)
49 RETURN
50 END




LUBR*STFFLR.SUB3

1 _SUBROUTINE STEDMP (MU NG M6 NG SIGMeCeCLaNReNC1GL2 G2
2 LMNEW ¢ NNEW s MNEW1 ¢ MNEW2 ¢ NNEW1 s NNEW2 ¢ ALPH2ALL1#AL2,C220
3 lfi1-P“-N‘-M3+MENO@NEND&E1;ESADx+DI4Bn4E4RSI+uﬂ+MﬁL____nw—m——-
4% 1IMAX ¢ JMAX)
5 NOIIBLE PRECISION POePS,RST
6 1,61r62,SUML,SUM2+ALL,AL2¢XG1leXG2+ERR2+ERR3
7 REAL MO S
8 DIMENSION G1(N6¢M6)rG2(NErM6) ¢+PL{NRINC)
9 T=PO/PS - —
10 QT=(2-/20q1*‘(10“/0|“1
11 IE(T=QT)4.4:5
12 4  AL1=1,
13 AL2=Fx(POsk2=]1,)
14 CUU=2  XNEND*DY /DX +2 « *MEND#DX /DY
15 GO T0 6 e
16 5 ALPHEPS/ (P01 4)~{0.4/2:.8)%{(PS/PD)x%(1./1.8) /(1=
17 1(PO/PS) k(4 /1a8))) :
18 AL1=2,#PS*PO/ {ALPH* (PO%*2=1, } *F) :
19 ‘ AL2=2 . xPS%xP0O/ALPH — _
20 C44=1,+AL1% (24 *DYRNEND/DX+2 4 #DX*MEND/DY)
21 6 CONT INUE —_
22 0oM2=1,0
23 Do 10 I=1,.500
24 EG1=0,0
25 EG2=0.0 —_
26 ERR2=0.0
27 ERR3=0.0 . . .
28 CALL GCMPT(GIrG2-2rM4P2lNNEN1'NQQM“0N60M6oCIC1'
29 1EGL2EGRERR2 ' ERR3I+OMGPPL )NReNCoIX o SIGMe IMAX e UMAX)
30 CALL GCMPT(GL1sG2¢2rMNEWL +NNEWsNG4,NUsMUINEIME,CoClr
33 1EGLIEG2:ERR2ERRIsOMGIPL1 o NRoaNCDXsSIGMe IMAX  UMAX) . .
32 CALL GCMPT(G1lrG2rMNEW2 M4 NNEWZ ¢ NG o NU s MG NG MG CfClr
33 1EGL ¢ EG2ERR2,ERRIsOMGIPL NRINCo DX SIGMe IMAXOUMAX)
34 SUM1=0.0
o 35 SUM2=0.0
36 DO 11 IRS=NNEW2/N3»2
37 SUM1=SuUM1+C22% (Gl (IR=1,MNEWL)+GL(IR=1vMNEW2)+ .. .
38 14.0%(GL{IR/MNEWL)+G1{IR/MNEW2) ) +G1 (JR+1 MNEW1 )+
39 1GLUIR+1 ) MNEW2)) ___ . _ e e
40 11 sumMz= SUM2+caa*(sal1R-1-MNEH1)+62{1R-1-MNEW2)+
91 14, 0* (G2 (IR MNFWL)+G2 (IR MNEW2)) +G2 (IR+1 s MNEW1 )
42 1+G62(IR+1+MNEW2) )
N 43 .. DO 12 ISZMNEW2eM3e2 . _ e )
44 SUM1=SUM1+C11x(G1 (NNEW1 IS-l)+61(NNEW2rIS~1)+
45 18, 0% (GL(NNEH1 TSI +G1 (NNEW2, IS ) +G1 (NNFWEISH - e
46 1+G1{NNEW2,15+1))
47 12 SUM2=SUM2+C11x (G2 (NNEW1»1S=1)+G2 (NNFW2s JS=1)+
48 14,05 (G2 (NNEWL12IS)+G2 (NNEW2e IS) ) +G2 (NNEW1»IS+1) +
L 49 162 (NNEW2 ¢ 1S+111 — -
& 1V=MY
5 IWSNNEW - T e e
, 52 16 DO 17 IT=IWeNu
53 DO 17 ItizMNEMe IV
54 X61=61(IT,IU)
55 XG2=G2{(17T.1)

56 GL(IT,IU)=(ALI*SUM1+AL2)/Cl4




57 4 62(ITrIU)=AL1#SUMR/CLG .
— 58 GI{ITLIW)OM2GI(ITeTUI (L =OMR)*XGY. R
59 G2{IT,IUV)=0OM2eG2(ITrIU)+(],~OM2)%XG2
— 60  CAiLL FRRORI(G1,EGL:XG1+ERR2/ MO NA2 Tir IT o IMAX 2 IMAX)
6l CALL ERROR(G2+EG2¢XG2rERRIIMEy NG IUsITe IMAY ¢ JMAX)
- f2 JIF(II . Fo M) GO TO 1S —
63 17 CONTINUE
. 6 60 _TO0 18 e e
65 15 IV=MNEW
X IWSNNEW2 -
&7 GO 10 16
&8 18 CONTINUE
69 DO 815 Il=1.,My
70 Gl(NY+1,I1)=G1iNU=1,]11)
71 815 G2{N4+1,11)=G2(NU4~1,11)
7e DO 816 T12=1.,NY
73 GLl{I2/My+1)=6l(I2/Mu=1)
74 _ 816 G2(I2,M4+1)=62(12MY~1) —
75 EG1=SQRT(EG1) /{M3=xN3)
76 EG2=SQRT{EG2) / (MI*N3)
77 IF {ERR2=,:5%10.,%%=3) 19,10+10
78 e 19 IF (ERR3=.5#10,%*=3) 2030e10 e
79 10 CONTINUE
Ad 20 CONT INUE
a8l w21=0,0
82 we2=0,0 _—
83 CONST=DX*DY/9.0
B4 DO 1 J=2eM3,2 e
asS DO 1 K=2/N3r2
— 86 W2lz (Gl (K+1rJ+1)/PL(K+ ) + -l) L
87 1/PLIK+1 2 J=1)+GL{K=1eJ+]1)/PL{K=1, J+1)+61(K=1rJ=1)
88 1/P A K=1pJ=1)144o%{GLliKeJ+1)/P1(Kp +1)+61 (KeJd=1) e e e
89 1/PL{KrJ=1)4G1(K+1eJ) /PL(K+1oJ)#GL(K=1+rJ)/PLiK=~1,J))+
90 11661 (KeJ) /PL(Ke J))
gl 1 W22=W224+CONST#(G2(K+1 v J+1)/P1{K+1,sJ+1)+G62(K+1pJ=1)
— 92 + - - + - - -
93 1/PLIK=1rJ=1)+4 o2 (G2{KrJ+1)/PLIK»J#1)4G2(KesJ=1)
94 1/P1 (K =1} +G2{K+1pJ} /PLIK+L 0 J) 462 (Kelr J)/PL{K=1,J))4¢
95 1164%G2(KeJ) 7/P1(KeJ))
96 W21=4,.*W21
97 W22=4 ., *%W22
98 STIFF==W21/({P5=1,)
99 DAMP==12,%W22/SIGM
_.xo0 0000000 WRITE (6:889) SIGMiPSeRST1POIMO WO F2STIFF,DAMP —
101 889  FORMAT(*0*»5Xs9E12.3)
102 RETURN
103 END




A~9

LUBR*STFFLR.SUBY

1 _SUBROUTINE GCMPTAGL +62eutsKoMeNaNUsMbaNG o MosCoCLeEG e
2 1EG2+ERR2+ERRI+OMGrP1yNRINCrDXeSIGM?» IMAX s JMAX)
- 3 DOUBLE. PRECISION G1:62:X612XG21X6sYG1ERR2ERR3 S—
4 DIMENSION 61 (N6yM6) 1G2(N6+ME) »PLINRINC)
- 8 PI=3,.14159
6 DO 1 I=JrK
7 DO 1 L=MeN
8 C2=SIGM*DX*%2/P1 (L 1)
9 CASSIGMARP1{L 1) DX %% L
10 XMUZ2.#(COS(PI/(2.%M4=14) ) +COS(PI/(2,%Ni4=1.)})
11 RHOZ( (C2*DXkx2+SORT (C2 422 RDX 4K+ 1 Fo kXM Jk2) LAl o
12 OMGZ2./ (1, +SQRT(1,~RHO*%2))
13 XG1=61 (1 » 1)
14 X62262(L»r1)
15 XGECH(GI(L e T41)4GH0 2 Tm1)4CIw (5L 31T} 461 {Lmle]))d
16 1C2%62(L,1))
— 12 Gl s T)=OMGRXGH (1 ,=OMGI2G1 (L o] )
18 YOECk{G2 (Lo I+1)4G2({LsI1=1)4CIn(G2(L+1+1)462(L~1rT))~
19 1C3=C2%X5G1) . N
20 G2(Ls I)ZYGHOMG* (1,=-0MG) *G2 (Lo 1)
21 CAL! FRROR{GL+EG1oXG1rERR2+ME MNArT ol » IMAXSUMAX) . .
22 CALL ERROR(G2+EG2sXG2/rERRIIMEsNGr T 1L r IMAX » JMAX) ‘
23 1 CONTINUE
24 RETURN
25 END
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